Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
2.
Front Pediatr ; 11: 1123939, 2023.
Article in English | MEDLINE | ID: mdl-36999083

ABSTRACT

Background: Patent ductus arteriosus (PDA) and diaphragmatic dysfunction are frequently seen in newborn infants but their relationship remains unknown. We aimed to use point of care ultrasound to compare diaphragmatic kinetics in infants with a PDA compared to in those without a PDA. Methods: M-mode ultrasonography was used to measure the mean inspiratory velocity (V I) in newborn infants with and without a haemodynamically significant PDA admitted in the Neonatal Unit at King's College Hospital during a three month period. Results: Seventeen diaphragmatic ultrasound studies were reviewed from 14 infants with a median (IQR) gestational age of 26.1 (25.8-30.6) weeks, birth weight of 780 (660-1385) gr at a postnatal age of 18 (14-34) days. Eight scans had evidence of a PDA. The median (IQR) VI was significantly lower in scans with a PDA [1.01 (0.78-1.86) cm/s] compared to the ones without a PDA [3.21 (2.80-3.59) cm/s, p < 0.001]. The median (IQR) gestational age was lower in infants with a PDA [25.8 (25.6-27.3) weeks] compared to infants without a PDA [29.0 (26.1-35.1) weeks, p = 0.007]. Using multivariable linear regression analysis the VI was independently associated with a PDA (adjusted p < 0.001) but not with the gestational age (adjusted p = 0.659). Conclusions: Patent ductus arteriosus was associated with a lower mean inspiratory velocity in neonates and this effect was independent of gestational age.

3.
Am J Pathol ; 193(5): 558-566, 2023 05.
Article in English | MEDLINE | ID: mdl-36773785

ABSTRACT

Hepatic zonation is critical for most metabolic functions in liver. Wnt signaling plays an important role in establishing and maintaining liver zonation. Yet, the anatomic expression of Wnt signaling components, especially all 10 Frizzled (Fzd) receptors, has not been characterized in adult liver. To address this, the spatial expression of Fzd receptors was quantitatively mapped in adult mouse liver via multiplex fluorescent in situ hybridization. Although all 10 Fzd receptors were expressed within a metabolic unit, Fzd receptors 1, 4, and 6 were the highest expressed. Although most Wnt signaling occurs in zone 3, expression of most Fzd receptors was not zonated. In contrast, Fzd receptor 6 was preferentially expressed in zone 1. Wnt2 and Wnt9b expression was highly zonated and primarily found in zone 3. Therefore, the current results suggest that zonated Wnt/ß-catenin signaling at baseline occurs primarily due to Wnt2 and Wnt9b rather than zonation of Fzd mRNA expression. Finally, the study showed that Fzd receptors and Wnts are not uniformly expressed by all hepatic cell types. Instead, there is broad distribution among both hepatocytes and nonparenchymal cells, including endothelial cells. Overall, this establishment of a definitive mRNA expression atlas, especially of Fzd receptors, opens the door to future functional characterization in healthy and diseased liver states.


Subject(s)
Receptors, Wnt , Wnt Proteins , Mice , Animals , Receptors, Wnt/genetics , Receptors, Wnt/metabolism , Wnt Proteins/genetics , In Situ Hybridization, Fluorescence , Endothelial Cells/metabolism , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Liver/metabolism , Wnt Signaling Pathway , RNA, Messenger/genetics , RNA, Messenger/metabolism , beta Catenin/metabolism
6.
Hepatology ; 77(5): 1593-1611, 2023 05 01.
Article in English | MEDLINE | ID: mdl-35862186

ABSTRACT

BACKGROUND AND AIMS: Liver regeneration (LR) following partial hepatectomy (PH) occurs via activation of various signaling pathways. Disruption of a single pathway can be compensated by activation of another pathway to continue LR. The Wnt-ß-catenin pathway is activated early during LR and conditional hepatocyte loss of ß-catenin delays LR. Here, we study mechanism of LR in the absence of hepatocyte-ß-catenin. APPROACH AND RESULTS: Eight-week-old hepatocyte-specific Ctnnb1 knockout mice (ß-catenin ΔHC ) were subjected to PH. These animals exhibited decreased hepatocyte proliferation at 40-120 h and decreased cumulative 14-day BrdU labeling of <40%, but all mice survived, suggesting compensation. Insulin-mediated mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) activation was uniquely identified in the ß-catenin ΔHC mice at 72-96 h after PH. Deletion of hepatocyte regulatory-associated protein of mTOR (Raptor), a critical mTORC1 partner, in the ß-catenin ΔHC mice led to progressive hepatic injury and mortality by 30 dys. PH on early stage nonmorbid Raptor ΔHC -ß-catenin ΔHC mice led to lethality by 12 h. Raptor ΔHC mice showed progressive hepatic injury and spontaneous LR with ß-catenin activation but died by 40 days. PH on early stage nonmorbid Raptor ΔHC mice was lethal by 48 h. Temporal inhibition of insulin receptor and mTORC1 in ß-catenin ΔHC or controls after PH was achieved by administration of linsitinib at 48 h or rapamycin at 60 h post-PH and completely prevented LR leading to lethality by 12-14 days. CONCLUSIONS: Insulin-mTORC1 activation compensates for ß-catenin loss to enable LR after PH. mTORC1 signaling in hepatocytes itself is critical to both homeostasis and LR and is only partially compensated by ß-catenin activation. Dual inhibition of ß-catenin and mTOR may have notable untoward hepatotoxic side effects.


Subject(s)
Liver Regeneration , beta Catenin , Mice , Animals , Liver Regeneration/physiology , beta Catenin/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Insulin/metabolism , Hepatocytes/metabolism , TOR Serine-Threonine Kinases/metabolism , Wnt Signaling Pathway/physiology , Mice, Knockout , Cell Proliferation , Sirolimus/pharmacology
7.
Ticks Tick Borne Dis ; 14(1): 102056, 2023 01.
Article in English | MEDLINE | ID: mdl-36399958

ABSTRACT

Cytauxzoon felis is a tick-borne piroplasmid hemoparasite that causes life-threatening disease in cats. Despite the critical role that ticks play in pathogen transmission, our knowledge regarding the C. felis life cycle remains limited to the feline hosts. Specific life stages of C. felis within the tick host have never been visualized microscopically and previous investigations have been limited to molecular detection by polymerase chain reaction (PCR). Sporozoites are the infectious stage of piroplasmids that are transmitted by ticks. In other tick-borne piroplasmids, sporozoite-based vaccines play a key role in disease prevention and management. We believe sporozoites have similar potential for cytauxzoonosis. Therefore, the objective of this study was to use different molecular and microscopic techniques to detect and evaluate C. felis sporozoites in tick salivary glands (SG). A total of 140 Amblyomma americanum adults that were fed on C. felis-infected cats as nymphs were included for this study. Specifically, dissected SGs were quartered and subjected to C. felis RT-PCR, RNAscope® in situ hybridization (ISH), histology, direct azure staining, and transmission electron microscopy (TEM). Cytauxzoon felis RT-PCR was also performed on half tick (HT) carcasses after SG dissection. Cytauxzoon felis RNA was detected in SGs of 17/140 ticks. Of these, 7/17 ticks had microscopic visualization via ISH and/or TEM. The remaining 10/17 ticks had only molecular detection of C. felis in SGs via RT-PCR without visualization. Cytauxzoon felis RNA was detected solely in HT carcasses via RT-PCR in 9/140 ticks. In ISH-positive tick SGs, hybridization signals were present in cytoplasms of SG acinar cells. TEM captured rare C. felis organisms with characteristic ultrastructural features of sporozoites. This study describes the first direct visualization of any developing stage of C. felis in ticks. Forthcoming studies should employ a combination of molecular and microscopic techniques to investigate the C. felis life cycle in A. americanum.


Subject(s)
Amblyomma , Salivary Glands , Cats , Animals , Microscopy, Electron, Transmission
8.
Cell Rep Med ; 3(10): 100754, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36220068

ABSTRACT

The conclusive identity of Wnts regulating liver zonation (LZ) and regeneration (LR) remains unclear despite an undisputed role of ß-catenin. Using single-cell analysis, we identified a conserved Wnt2 and Wnt9b expression in endothelial cells (ECs) in zone 3. EC-elimination of Wnt2 and Wnt9b led to both loss of ß-catenin targets in zone 3, and re-appearance of zone 1 genes in zone 3, unraveling dynamicity in the LZ process. Impaired LR observed in the knockouts phenocopied models of defective hepatic Wnt signaling. Administration of a tetravalent antibody to activate Wnt signaling rescued LZ and LR in the knockouts and induced zone 3 gene expression and LR in controls. Administration of the agonist also promoted LR in acetaminophen overdose acute liver failure (ALF) fulfilling an unmet clinical need. Overall, we report an unequivocal role of EC-Wnt2 and Wnt9b in LZ and LR and show the role of Wnt activators as regenerative therapy for ALF.


Subject(s)
Focal Nodular Hyperplasia , Liver Regeneration , Humans , Liver Regeneration/genetics , beta Catenin/genetics , Endothelial Cells/metabolism , Transcriptome , Wnt Proteins/genetics , Acetaminophen/metabolism , Focal Nodular Hyperplasia/metabolism , Wnt2 Protein/genetics
9.
Nat Commun ; 13(1): 5145, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050311

ABSTRACT

Existing weather forecasting models are based on physics and use supercomputers to evolve the atmosphere into the future. Better physics-based forecasts require improved atmospheric models, which can be difficult to discover and develop, or increasing the resolution underlying the simulation, which can be computationally prohibitive. An emerging class of weather models based on neural networks overcome these limitations by learning the required transformations from data instead of relying on hand-coded physics and by running efficiently in parallel. Here we present a neural network capable of predicting precipitation at a high resolution up to 12 h ahead. The model predicts raw precipitation targets and outperforms for up to 12 h of lead time state-of-the-art physics-based models currently operating in the Continental United States. The results represent a substantial step towards validating the new class of neural weather models.


Subject(s)
Deep Learning , Computer Simulation , Forecasting , Neural Networks, Computer , Weather
10.
Gastroenterology ; 163(2): 449-465, 2022 08.
Article in English | MEDLINE | ID: mdl-35550144

ABSTRACT

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (ICC) is a devastating liver cancer with extremely high intra- and inter-tumoral molecular heterogeneity, partly due to its diverse cellular origins. We investigated clinical relevance and the molecular mechanisms underlying hepatocyte (HC)-driven ICC development. METHODS: Expression of ICC driver genes in human diseased livers at risk for ICC development were examined. The sleeping beauty and hydrodynamic tail vein injection based Akt-NICD/YAP1 ICC model was used to investigate pathogenetic roles of SRY-box transcription factor 9 (SOX9) and yes-associated protein 1 (YAP1) in HC-driven ICC. We identified DNA methyltransferase 1 (DNMT1) as a YAP1 target, which was validated by loss- and gain-of-function studies, and its mechanism addressed by chromatin immunoprecipitation sequencing. RESULTS: Co-expression of AKT and Notch intracellular domain (NICD)/YAP1 in HC yielded ICC that represents 13% to 29% of clinical ICC. NICD independently regulates SOX9 and YAP1 and deletion of either, significantly delays ICC development. Yap1 or TEAD inhibition, but not Sox9 deletion, impairs HC-to-biliary epithelial cell (BEC) reprogramming. DNMT1 was discovered as a novel downstream effector of YAP1-TEAD complex that directs HC-to-BEC/ICC fate switch through the repression of HC-specific genes regulated by master regulators for HC differentiation, including hepatocyte nuclear factor 4 alpha, hepatocyte nuclear factor 1 alpha, and CCAAT/enhancer-binding protein alpha/beta. DNMT1 loss prevented NOTCH/YAP1-dependent HC-driven cholangiocarcinogenesis, and DNMT1 re-expression restored ICC development following TEAD repression. Co-expression of DNMT1 with AKT was sufficient to induce tumor development including ICC. DNMT1 was detected in a subset of HCs and dysplastic BECs in cholestatic human livers prone to ICC development. CONCLUSION: We identified a novel NOTCH-YAP1/TEAD-DNMT1 axis essential for HC-to-BEC/ICC conversion, which may be relevant in cholestasis-to-ICC pathogenesis in the clinic.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Cholestasis , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/pathology , Cholestasis/pathology , Hepatocytes/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , YAP-Signaling Proteins
11.
J Pers Med ; 12(5)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35629086

ABSTRACT

This Special Issue, entitled "Personalized Medicine for Liver Disease: From Molecular Mechanisms to Potential Targeted Therapies", includes 11 publications from colleagues working on various liver diseases including non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), hepatocellular carcinoma (HCC), primary biliary cholangitis (PBC), as well as various treatment modalities including pharmacotherapies and liver transplantation [...].

12.
Hepatol Commun ; 6(5): 1123-1139, 2022 05.
Article in English | MEDLINE | ID: mdl-34981658

ABSTRACT

The oxysterol receptor liver X receptor (LXR) is a nuclear receptor best known for its function in the regulation of lipid and cholesterol metabolism. LXRs, both the α and ß isoforms, have been suggested as potential therapeutic targets for several cancer types. However, there was a lack of report on whether and how LXRα plays a role in the development of hepatocellular carcinoma (HCC). In the current study, we found that systemic activation of LXRα in the VP-LXRα knock-in (LXRαKI) mice or hepatocyte-specific activation of LXRα in the VP-LXRα transgenic mice sensitized mice to liver tumorigenesis induced by the combined treatment of diethylnitrosamine (DEN) and 3,3',5,5'-tetrachloro-1,4-bis (pyridyloxy) benzene (TCPOBOP). Mechanistically, the LXRα-responsive up-regulation of interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway and the complement system, and down-regulation of bile acid metabolism, may have contributed to increased tumorigenesis. Accumulations of secondary bile acids and oxysterols were found in both the serum and liver tissue of LXRα activated mice. We also observed an induction of monocytic myeloid-derived suppressor cells accompanied by down-regulation of dendritic cells and cytotoxic T cells in DEN/TCPOBOP-induced liver tumors, indicating that chronic activation of LXRα may have led to the activation of innate immune suppression. The HCC sensitizing effect of LXRα activation was also observed in the c-MYC driven HCC model. Conclusion: Our results indicated that chronic activation of LXRα promotes HCC, at least in part, by promoting innate immune suppressor as a result of accumulation of oxysterols, as well as up-regulation of the IL-6/Janus kinase/STAT3 signaling and complement pathways.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Oxysterols , Animals , Carcinoma, Hepatocellular/chemically induced , Cell Transformation, Neoplastic/genetics , Interleukin-6 , Liver Neoplasms/chemically induced , Mice , Mice, Transgenic
13.
J Perinat Med ; 50(3): 327-333, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-34847313

ABSTRACT

OBJECTIVES: Pulmonary hypertension (PH) is a complication of bronchopulmonary dysplasia (BPD) and associated with increased mortality and morbidity. Our aim was to identify, in infants with BPD, the effect of PH on health-care utilisation and health related cost of care. METHODS: An electronic data recording system was used to identify infants ≤32 weeks of gestation who developed BPD. PH was classified as early (≤28 days after birth) or late (>28 days after birth). RESULTS: In the study period, 182 infants developed BPD; 22 (12.1%) developed late PH. Development of late PH was associated with a lower gestational age [24.6 (23.9-26.9) weeks, p=0.001] and a greater need for positive pressure ventilation on day 28 after birth (100%) compared to infants without late PH (51.9%) (odds ratio (OR) 19.5, 95% CI: 2.6-148), p<0.001. Late PH was associated with increased mortality (36.4%) compared those who did not develop late PH (1.9%) after adjusting for gestational age and ventilation duration (OR: 26.9, 95% CI: 3.8-189.4), p<0.001. In infants who survived to discharge, late PH development was associated with a prolonged duration of stay [147 (118-189) days] compared to the infants that did not develop late PH [109 (85-149) days] (p=0.03 after adjusting for gestational age). Infants who had late PH had a higher cost of stay compared to infants with BPD who did not develop late PH (median £113,494 vs. £78,677, p=0.016 after adjusting for gestational age). CONCLUSIONS: Development of late PH was associated with increased mortality, a prolonged duration of stay and higher healthcare cost.


Subject(s)
Bronchopulmonary Dysplasia/epidemiology , Hypertension, Pulmonary/epidemiology , Birth Weight , Female , Hospital Costs , Humans , Hypertension, Pulmonary/economics , Infant , Infant, Newborn , Infant, Premature , Intensive Care Units, Neonatal/economics , Length of Stay , London/epidemiology , Male , Respiration, Artificial , Risk Factors
14.
Elife ; 102021 10 05.
Article in English | MEDLINE | ID: mdl-34609282

ABSTRACT

Expansion of biliary epithelial cells (BECs) during ductular reaction (DR) is observed in liver diseases including cystic fibrosis (CF), and associated with inflammation and fibrosis, albeit without complete understanding of underlying mechanism. Using two different genetic mouse knockouts of ß-catenin, one with ß-catenin loss is hepatocytes and BECs (KO1), and another with loss in only hepatocytes (KO2), we demonstrate disparate long-term repair after an initial injury by 2-week choline-deficient ethionine-supplemented diet. KO2 show gradual liver repopulation with BEC-derived ß-catenin-positive hepatocytes and resolution of injury. KO1 showed persistent loss of ß-catenin, NF-κB activation in BECs, progressive DR and fibrosis, reminiscent of CF histology. We identify interactions of ß-catenin, NFκB, and CF transmembranous conductance regulator (CFTR) in BECs. Loss of CFTR or ß-catenin led to NF-κB activation, DR, and inflammation. Thus, we report a novel ß-catenin-NFκB-CFTR interactome in BECs, and its disruption may contribute to hepatic pathology of CF.


The liver has an incredible capacity to repair itself or 'regenerate' ­ that is, it has the ability to replace damaged tissue with new tissue. In order to do this, the organ relies on hepatocytes (the cells that form the liver) and bile duct cells (the cells that form the biliary ducts) dividing and transforming into each other to repair and replace damaged tissue, in case the insult is dire. During long-lasting or chronic liver injury, bile duct cells undergo a process called 'ductular reaction', which causes the cells to multiply and produce proteins that stimulate inflammation, and can lead to liver scarring (fibrosis). Ductular reaction is a hallmark of severe liver disease, and different diseases exhibit ductular reactions with distinct features. For example, in cystic fibrosis, a unique type of ductular reaction occurs at late stages, accompanied by both inflammation and fibrosis. Despite the role that ductular reaction plays in liver disease, it is not well understood how it works at the molecular level. Hu et al. set out to investigate how a protein called ß-catenin ­ which can cause many types of cells to proliferate ­ is involved in ductular reaction. They used three types of mice for their experiments: wild-type mice, which were not genetically modified; and two strains of genetically modified mice. One of these mutant mice did not produce ß-catenin in biliary duct cells, while the other lacked ß-catenin both in biliary duct cells and in hepatocytes. After a short liver injury ­ which Hu et al. caused by feeding the mice a specific diet ­ the wild-type mice were able to regenerate and repair the liver without exhibiting any ductular reaction. The mutant mice that lacked ß-catenin in hepatocytes showed a temporary ductular reaction, and ultimately repaired their livers by turning bile duct cells into hepatocytes. On the other hand, the mutant mice lacking ß-catenin in both hepatocytes and bile duct cells displayed sustained ductular reactions, inflammation and fibrosis, which looked like that seen in patients with liver disease associated to cystic fibrosis. Further probing showed that ß-catenin interacts with a protein called CTFR, which is involved in cystic fibrosis. When bile duct cells lack either of these proteins, another protein called NF-B gets activated, which causes the ductular reaction, leading to inflammation and fibrosis. The findings of Hu et al. shed light on the role of ß-catenin in ductular reaction. Further, the results show a previously unknown interaction between ß-catenin, CTFR and NF-B, which could lead to better treatments for cystic fibrosis in the future.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Fibrosis/genetics , Inflammation/genetics , NF-kappa B/genetics , beta Catenin/genetics , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Fibrosis/immunology , Inflammation/immunology , Mice , Mice, Transgenic , NF-kappa B/metabolism , beta Catenin/metabolism
15.
Hepatol Commun ; 5(11): 1911-1926, 2021 11.
Article in English | MEDLINE | ID: mdl-34558820

ABSTRACT

The only definitive therapy for end-stage liver disease is whole-organ transplantation. The success of this intervention is severely limited by the complexity of the surgery, the cost of patient care, the need for long-term immunosuppression, and the shortage of donor organs. In rodents and humans, end-stage degeneration of hepatocyte function is associated with disruption of the liver-specific transcriptional network and a nearly complete loss of promoter P1-driven hepatocyte nuclear factor 4-alpha (P1-HNF4α) activity. Re-expression of HNF4α2, the predominant P1-HNF4α, reinstates the transcriptional network, normalizes the genes important for hepatocyte function, and reverses liver failure in rodents. In this study, we tested the effectiveness of supplementary expression of human HNF4α2 messenger RNA (mRNA) in primary human hepatocytes isolated from explanted livers of patients who underwent transplant for end-stage irreversibly decompensated liver failure (Child-Pugh B, C) resulting from alcohol-mediated cirrhosis and nonalcoholic steatohepatitis. Re-expression of HNF4α2 in decompensated cirrhotic human hepatocytes corrects the disrupted transcriptional network and normalizes the expression of genes important for hepatocyte function, improving liver-specific protein expression. End-stage liver disease in humans is associated with both loss of P1-HNF4α expression and failure of its localization to the nucleus. We found that while HNF4α2 re-expression increased the amount of P1-HNF4α protein in hepatocytes, it did not alter the ability of hepatocytes to localize P1-HNF4α to their nuclei. Conclusion: Re-expression of HNF4α2 mRNA in livers of patients with end-stage disease may be an effective therapy for terminal liver failure that would circumvent the need for organ transplantation. The efficacy of this strategy may be enhanced by discovering the cause for loss of nuclear P1-HNF4α localization in end-stage cirrhosis, a process not found in rodent studies.


Subject(s)
Cellular Reprogramming/genetics , End Stage Liver Disease/genetics , Hepatocyte Nuclear Factor 4/genetics , Liver Cirrhosis/genetics , RNA, Messenger/physiology , Animals , Cell Culture Techniques , Gene Regulatory Networks/genetics , Hepatocytes/physiology , Humans , Liver/cytology , Promoter Regions, Genetic/genetics
16.
Cell Rep ; 36(1): 109310, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34233187

ABSTRACT

Yes-associated protein 1 (YAP1) regulates cell plasticity during liver injury, regeneration, and cancer, but its role in liver development is unknown. We detect YAP1 activity in biliary cells and in cells at the hepatobiliary bifurcation in single-cell RNA sequencing analysis of developing livers. Deletion of Yap1 in hepatoblasts does not impair Notch-driven SOX9+ ductal plate formation but does prevent the formation of the abutting second layer of SOX9+ ductal cells, blocking the formation of a patent intrahepatic biliary tree. Intriguingly, these mice survive for 8 months with severe cholestatic injury and without hepatocyte-to-biliary transdifferentiation. Ductular reaction in the perihilar region suggests extrahepatic biliary proliferation, likely seeking the missing intrahepatic biliary network. Long-term survival of these mice occurs through hepatocyte adaptation via reduced metabolic and synthetic function, including altered bile acid metabolism and transport. Overall, we show YAP1 as a key regulator of bile duct development while highlighting a profound adaptive capability of hepatocytes.


Subject(s)
Adaptation, Physiological , Biliary Tract/physiology , Liver/physiology , Stem Cells/metabolism , YAP-Signaling Proteins/deficiency , Animals , Cell Transdifferentiation , Genotype , Imaging, Three-Dimensional , Liver/embryology , Mice , Mice, Inbred C57BL , Mice, Knockout , Morphogenesis , Regeneration , YAP-Signaling Proteins/metabolism
17.
Semin Liver Dis ; 41(2): 213-224, 2021 05.
Article in English | MEDLINE | ID: mdl-33992030

ABSTRACT

Chronic liver injury results in cirrhosis and end-stage liver disease (ESLD) which represents a leading cause of death worldwide, affecting people in their most productive years of life. Medical therapy can extend life, but the only definitive treatment is liver transplantation (LT). However, LT remains limited by access to quality donor organs and suboptimal long-term outcomes. The degeneration from healthy-functioning livers to cirrhosis and ESLD involves a dynamic process of hepatocyte damage, diminished hepatic function, and adaptation. However, the mechanisms responsible for deterioration of hepatocyte function and ultimately hepatic failure in man are poorly understood. We review the current understanding of cirrhosis and ESLD as a dynamic process and outline the current mechanisms associated with the development of hepatic failure from the clinical manifestations to energy adaptations, regeneration, and regulation of nuclear transcription factors. A new generation of therapeutics could target stabilization of hepatocyte differentiation and function to avoid the need for transplantation in patients with cirrhosis and ESLD.


Subject(s)
End Stage Liver Disease , Liver Transplantation , End Stage Liver Disease/surgery , Hepatocytes , Humans , Liver Cirrhosis
18.
BMJ Open Respir Res ; 8(1)2021 04.
Article in English | MEDLINE | ID: mdl-33827856

ABSTRACT

BACKGROUND: The symptoms, radiography, biochemistry and healthcare utilisation of patients with COVID-19 following discharge from hospital have not been well described. METHODS: Retrospective analysis of 401 adult patients attending a clinic following an index hospital admission or emergency department attendance with COVID-19. Regression models were used to assess the association between characteristics and persistent abnormal chest radiographs or breathlessness. RESULTS: 75.1% of patients were symptomatic at a median of 53 days post discharge and 72 days after symptom onset and chest radiographs were abnormal in 47.4%. Symptoms and radiographic abnormalities were similar in PCR-positive and PCR-negative patients. Severity of COVID-19 was significantly associated with persistent radiographic abnormalities and breathlessness. 18.5% of patients had unscheduled healthcare visits in the 30 days post discharge. CONCLUSIONS: Patients with COVID-19 experience persistent symptoms and abnormal blood biomarkers with a gradual resolution of radiological abnormalities over time. These findings can inform patients and clinicians about expected recovery times and plan services for follow-up of patients with COVID-19.


Subject(s)
Aftercare , Biomarkers/analysis , COVID-19 , Patient Discharge/standards , Radiography, Thoracic , Symptom Assessment , Aftercare/methods , Aftercare/organization & administration , COVID-19/blood , COVID-19/diagnostic imaging , COVID-19/epidemiology , COVID-19/physiopathology , Female , Humans , Male , Middle Aged , Patient Acceptance of Health Care/statistics & numerical data , Radiography, Thoracic/methods , Radiography, Thoracic/statistics & numerical data , Recovery of Function , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Symptom Assessment/methods , Symptom Assessment/statistics & numerical data , Time Factors , United Kingdom/epidemiology
19.
Am J Pathol ; 191(5): 885-901, 2021 05.
Article in English | MEDLINE | ID: mdl-33662348

ABSTRACT

Hepatocytes are highly polarized epithelia. Loss of hepatocyte polarity is associated with various liver diseases, including cholestasis. However, the molecular underpinnings of hepatocyte polarization remain poorly understood. Loss of ß-catenin at adherens junctions is compensated by γ-catenin and dual loss of both catenins in double knockouts (DKOs) in mice liver leads to progressive intrahepatic cholestasis. However, the clinical relevance of this observation, and further phenotypic characterization of the phenotype, is important. Herein, simultaneous loss of ß-catenin and γ-catenin was identified in a subset of liver samples from patients of progressive familial intrahepatic cholestasis and primary sclerosing cholangitis. Hepatocytes in DKO mice exhibited defects in apical-basolateral localization of polarity proteins, impaired bile canaliculi formation, and loss of microvilli. Loss of polarity in DKO livers manifested as epithelial-mesenchymal transition, increased hepatocyte proliferation, and suppression of hepatocyte differentiation, which was associated with up-regulation of transforming growth factor-ß signaling and repression of hepatocyte nuclear factor 4α expression and activity. In conclusion, concomitant loss of the two catenins in the liver may play a pathogenic role in subsets of cholangiopathies. The findings also support a previously unknown role of ß-catenin and γ-catenin in the maintenance of hepatocyte polarity. Improved understanding of the regulation of hepatocyte polarization processes by ß-catenin and γ-catenin may potentially benefit development of new therapies for cholestasis.


Subject(s)
Cholestasis, Intrahepatic/pathology , Hepatocyte Nuclear Factor 4/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , beta Catenin/metabolism , gamma Catenin/metabolism , Adherens Junctions/metabolism , Animals , Cell Line, Tumor , Cell Polarity , Hepatocyte Nuclear Factor 4/genetics , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Mice, Knockout , Transforming Growth Factor beta/genetics , beta Catenin/genetics , gamma Catenin/economics , gamma Catenin/genetics
20.
Hepatology ; 74(2): 741-759, 2021 08.
Article in English | MEDLINE | ID: mdl-33529367

ABSTRACT

BACKGROUND AND AIMS: HCC remains a major unmet clinical need. Although activating catenin beta-1 (CTNNB1) mutations are observed in prominent subsets of HCC cases, these by themselves are insufficient for hepatocarcinogenesis. Coexpression of mutant CTNNB1 with clinically relevant co-occurrence has yielded HCCs. Here, we identify cooperation between ß-catenin and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in HCC. APPROACH AND RESULTS: Public HCC data sets were assessed for concomitant presence of CTNNB1 mutations and either mutations in nuclear factor erythroid-2-related factor-2 (NFE2L2) or Kelch like-ECH-associated protein 1 (KEAP1), or Nrf2 activation by gene signature. HCC development in mice and similarity to human HCC subsets was assessed following coexpression of T41A-CTNNB1 with either wild-type (WT)-, G31A-, or T80K-NFE2L2. Based on mammalian target of rapamycin complex 1 activation in CTNNB1-mutated HCCs, response of preclinical HCC to mammalian target of rapamycin (mTOR) inhibitor was investigated. Overall, 9% of HCC cases showed concomitant CTNNB1 mutations and Nrf2 activation, subsets of which were attributable to mutations in NFE2L2/KEAP1. Coexpression of mutated CTNNB1 with mutant NFE2L2, but not WT-NFE2L2, led to HCC development and mortality by 12-14 weeks. These HCCs were positive for ß-catenin targets, like glutamine synthetase and cyclin-D1, and Nrf2 targets, like NAD(P)H quinone dehydrogenase 1 and peroxiredoxin 1. RNA-sequencing and pathway analysis showed high concordance of preclinical HCC to human HCC subset showing activation of unique (iron homeostasis and glioblastoma multiforme signaling) and expected (glutamine metabolism) pathways. NFE2L2-CTNNB1 HCC mice were treated with mTOR inhibitor everolimus (5-mg/kg diet ad libitum), which led to >50% decrease in tumor burden. CONCLUSIONS: Coactivation of ß-catenin and Nrf2 is evident in 9% of all human HCCs. Coexpression of mutant NFE2L2 and mutant CTNNB1 led to clinically relevant HCC development in mice, which responded to mTOR inhibitors. Thus, this model has both biological and therapeutic implications.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , NF-E2-Related Factor 2/genetics , beta Catenin/genetics , Adolescent , Aged , Aged, 80 and over , Animals , Carcinogenesis/genetics , Carcinoma, Hepatocellular/pathology , Datasets as Topic , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Humans , Liver/pathology , Liver Neoplasms/pathology , Male , Mice , Middle Aged , Mutation , NF-E2-Related Factor 2/metabolism , Signal Transduction/genetics , Tumor Burden/genetics , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...